
Chuck Rohs 2024-04

DMD Clock
My Dot Matrix Display Clock

Chuck Rohs
• Comp Sci from U of Calgary

• Background in Compilers, Simulation, SCADA, Embedded, Security

• Retired for almost five years

• Interest in embedded hardware, software and pinball

Agenda
Clock Insanity

Products

Hub75 Interface

Hardware

Software

Data Files

Hub75 with esp8266

Background

• I like clocks.

• It seems to be “geek” thing

• Examples:

• E-ink home assistant clock

• Dot Matrix Heads up

• DMD pinball clock

• WS2812 strip clock

Background

• More Examples:

• Unreadable WS 2812 strip
clock

• Pinball playfield clock

• Seven segment home
assistant display

Background

• More Examples:

• Failed UV CNC clock

• Word Clock

• Persistence of vision clock,
bought parts for, but never
built

• Normal clock, that is actually
legible, to show me the time in
the lab

Overview

• 90s era pinball machines have
128 x 32 DM VF displays

• newer machine use led matrix
displays

• There are a large number of
animations made for this format
of display

History
• There are/were a number of these

DMD clocks on the market

• Some have been shut down due to
copyright violation

• Some “sort of” open source ones
have come and gone https://
gitlab.com/modernhackerspace/
dmdclock

https://gitlab.com/modernhackerspace/dmdclock
https://gitlab.com/modernhackerspace/dmdclock
https://gitlab.com/modernhackerspace/dmdclock

History
• Initially I was going to buy one, but

they are all in the $500 range if you
could find any.

• I was using these HUB75 displays
in my pinball machine.

• I thought I’d build one.

• code to drive these from a
raspberry pi has been around a
while https://github.com/hzeller/rpi-
rgb-led-matrix

https://github.com/hzeller/rpi-rgb-led-matrix
https://github.com/hzeller/rpi-rgb-led-matrix
https://github.com/hzeller/rpi-rgb-led-matrix

Hub75 Panels
• Used in signage

• Come in various dimensions: 64X32 64x64 32x8

• Panels will daisy chain

• They come in various sizes (pitches)

• p2.5 is the “pinball size”

• p5 are twice as big

• “p” is the spacing in mm

Hub75 Panels
• Hub75 connections

• Panels can be
chained together

• Separate 5V power
can draw many
amps

Hub75 Panels
• Separate 5V power (in a separate

connector)

• In a 32 line panel, only 2 lines display at
a time, one in the top half and one in the
bottom

• r1 g1 b1 are data for the top line, r2 g2
b2 are data for bottom line

• 16 addresses required in this case - set
by the four address lines: A,B,C,D

• CLK is the clock pin to clock in the
serial R G B data

• OE is output enable, and LAT is Latch

Hub75 Panels Continued
• Leds are on or off.

• To achieve any kind of intensity
differences, it must be done using
PWM in software.

• I.E. Super high frame rate.

• Eg 5Mhz / 2048 “pixels per field” =
2440 FPS 2400 / 30 = 80 updates
per frame. ~6 bpp of color depth.

• Panel hardware can handle 75 MHz

Hub75 Panels Continued
• Scope on the pi pico clock

Driving the Displays
• Lots of options for capable microcontrollers/driverboards:

• RaspberryPi - lots of software for this

• Esp8266 - works but not enough I/O for effective framerate (PWM)

• Teensy + smartled shield - more expensive works well

• Pi Pico (Rp2040) - works great

Requirements:
• One of the things I needed was processing data at 5 M Baud from my pinball

machine. (not required for the clock)

• This really limited me to the Teensy and the rp2040

• RP2040 has PIO that I wanted to play with, and allowed better control over
PWM brightness.

• Also needed:

• RTC

• µSD

• Buttons / rotary encoder for settings

Hardware:
• Pimoroni already had decent

hardware and software for this
purpose - interstate75

• This was a good starting point for the
design

Software
• At a high level this software is a mashup of:

• Teensey pixelmatrix code from mission pinball - for serial port
“framebuffer” streaming

• Interstate 75 code for pi pico pio/hub75 driver

• custom code for:

• ROM image decode

• Real Time Clock

• Menus,Time Display, Second indicator, Font handling

Dev Environment
• VSCode

• CMake

• Programming is done by coping a “UF2” file to the pico in bootloader mode.It
appears as a mass storage device over USB.

Animations
• I investigated a few sources for these

• Original roms and other software images had proprietary run length
encoding

• The RUN-DMD image had “raw” images, but the frame sequencing and
timing, needed to be reverse engineered, with a lot of “burn and learn”

• Animations are broken down by machine, and each machine animation
can be turned on or off in the menu.

Animations
• I spent lots of time

in HexFiend trying
to decode their
Roms for my V1

Animations
• Each animation has a list of frames

• Each frame points to an “image”
and has a delay.

• There is a mask for clock
transparency

• Lots of pinball animations are just
two or three frames cycling over
and over

Animations
• After doing all the reverse engineering, I stumbled on this:  
 
https://github.com/sigmafx/DotClk-Resources

• ~2000 animations in separate files

• Makes it easy to add your own

• Has tools to extract animations from ROMs

• I rewrote my parser and menu code at this point.

https://github.com/sigmafx/DotClk-Resources

ESP8266 and HUB 75
If you don’t have enough
I/O you can daisy chain
the outputs back into
the inputs

In this example 1 data
line is used to drive all
six (RGB1 and RGB2)
datelines

Demo

Demo video here

Thanks for your interest!

Questions?

